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ABSTRACT 

The general linear hypothesis is formulated for a multivariate 

stationary stochastic process.  The best (minimum variance) linear 

unbiased estxmates are derived for the regression functions and it 

is shown that many signal estimation problems are special cases of 

the general linear model.  Several examples are presented illustra- 

ting the technique for particular multivariate processes. 
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INTRODUCTION 

Many problems in the area of applied time series analysis can 

be formulated and solved by extending and generalizing well known 

techniques from the classical theory of the multivariate linear 

hypothesis.  The analogies between some of the physical models ex- 

pressed in terms of signals propagating across arrays and the usual 

analysis of variance models involving various kinds of effects are 

striking, particularly when it can be assumed that the multivariate 

stochastic process in question is weakly stationary.  In the sta- 

tionary case, simplicity in exposition as well as economy in com- 

putation result from performing the analysis in the frequency domain 

using the properties of the Fourier transform. 

As an example of a simple estimation problem suppose that a 

multivariate stochastic process {Y.(t), j=l,2,...,n, -«xt«»} consists 

of a signal which is identical for each j and a weakly stationary 

multivariate noise process.  More specifically we assume that 

Y. (t) = s(t) + n. (t)       j = l,2,.,.,n (1) 
^ — oo< \^<,<x> 

In this model s(t) is regarded as a fixed unknown signal with n.(t) 

a weakly stationary zero mean multivariate noise process with a 

correlation function given by 

Rjk(t-f) = Enj(t)nk(f) - /: e-'^'' c.^, |H     ^ 

where we assume that «^(w) is the cross spectral density matrix 

of the noise process.  The notation is simplified if we use contin- 

uous parameter processes and the results apply equally well to the 

discrete parameter sampled data version.  By a best linear unbiased 

estimate of the signal, say s (t), is meant the unbiased linearly 
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filtered version of the data (Es(t) ■ s(t)) which has the smallest 

variance (E(s(t) - s (t))2 = min.).  This problem is analogous to 

estimating the mean of a set of correlated random variables and 

has been previously considered by Kelly and Levin 5, and Capon, 

Greenfield, and Kolker, 1.  The inherent advantage of this model 

over the Wiener approach (for example see Papoulis, 8) is that it 

is not necessary to know in advance the functional form of the signal 

in order to minimize the mean square error or variance of the signal 

estimate. 

Frequently in the analysis of the multivariate process Y.(t) it 

is necessary to consider more general models for the signal such as 

yj(t) = s1(t) + s2(t-T;.) + n. (t) (3) 

where the output of the jth process is represented as the sum of 

two signals one of which has been delayed by a known amount T.. 

Equation (3) resembles the usual analysis of variance model with 

s1(t) corresponding to a row effect and s2(t) corresponding to a 

column effect.  Delaying s„(t) by T. makes the separation possible 
j 

and corresponds to multiplying by e   j in the frequency domain. 

Equation (3) suggests the utility of a more general linear model 

of the form 

P 
Vt) = I C    xiin <t-u) ßm(u) du + n (t) (4) 

m=l     J J 

j=l,. .. ,n  -oo<t<oo 

which includes p fixed unknown functions (signals) (ß1(t), ß?(t),..., 

ß (t)) to be estimated with X.k(t) an nxp matrix of fixed functions 

which are determined by the model in (4).  For example, equation 
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(4) reduces to equation (1) by the choices ß.(t) = s(t), X. (t) « 

6{t) the Dirac delta function and p = 1.  Equation (2) may be ob- 

tained by taking X^Ct) - Aft), X.2(t) = 6(t-T.) with p « 2, and 

62 (t) -= s1(t)/ ß2(t) ■ s2(t).  The Fourier transforms of the ob- 

servables X^it)   are often well known for estimation problems and 

the analysis proceeds easily in the frequency domain.  It should be 

noted that linear models of the form (4) have been developed for 

the single dimensional case, Grenander and Rosenblatt, 4, and the 

multivariate case Rosenblatt, 10, for some trigonometric and poly- 

nomial regression models or with special assumptions about the auto- 

regressive nature of the residuals n (t).  Parzen, 9, also gives 

the minimum variance solution for a single dimensional stochastic 

process.  The approach here takes advantage of formulas relating 

convolution in time to multiplication in frequency to develop sets 

of filters which can be applied either in time or frequency.  In 

addition we show how the general linear model can be specialized 

to include a majority of the signal estimation problems encounter- 

ed in practical situations.  Two examples are presented using the 

minimum variance unbiased solutions for equations (3) and (4) when 

it can be assumed that the noises are uncorrelated for j ^ k. 

GENERAL SOLUTION FOR BLUE (BEST LINEAR UNBIASED) ESTIMATORS 

We consider first the derivation of the best linear unbiased 

(BLUE) estimates for the p regression functions (ß, (t), B (t),...# 

ßp(t)) in equation (4) where (Xjk{t), j=l, .... n k = 1,...,p) is 

an nxp matrix of fixed known functions.  The Fourier transforms of 

X:jk(t) and ß^t) are assumed to exist for all j and k.  Consider 
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a class of linear estimates of ehe form 

Mt) - f  £ Nk(T) Yk(t"T) dT (5) 
■     k-=l      J 

where h.. (t) is a pxn matrix of filter functions to be determined. 

Note that determining h.k(t) is sufficient for estimating ß^(t) as 

the filters need only be convolved with the multivariate process 

y.(t) and summed to produce ß. (t). 

To introduce the unbiased property we assume that 

ß.(t) - n^h
ik^)xkm

(t-T"u) ßm (u) du dT (6) 
J
     km-00 J 

which implies by equations (4) and (5) that 

n 
ß.(t) = ß. (t) + I       t*    h. (T) n (t-x) dT (7) 
I      3     k=l      J 

Since Enk(t) = 0, equation (7) implies that Eß.(t) - ßj(t) if 

equation (6) is satisfied for all j and t.  Then, by taking Fourier 

transforms in equation (6) we arrive at the unbiased condition in 

frequency 

J     mk   J 

where the Fourier transforms of the elements of (7) appear in the 

same order in (8).  Now equation (8) implies that we must have 

(<*)) Ku«(y) - <5.m 
(9) 

I    «jk^ Xkm(ij) " 6jm 

where 6.  is the ordinary delta function.  Equation (9) can be 
jm 

written in matrix notation as 

HX(ü)) = I d0) 

with I the pxp identity matrix.  The equation is an identity at each 

frequency w. 

Since (7) is a vector of functions we determine the estimate 
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which minimizes the variance of 

P 

^t)  "   I  ^00 ai (U)  Pn ft-")  dU 
j=l   0    a (11) 

an arbitrary linearly filtered combination of the estimates ß.(t). 
D 

Note first that 
00 

(z(t) - Ez(t)) =    I  f f  a. (u)h., (T)n, (t-u-T) du dx 
j,k -oo 3   DK   K 

so that by squaring and taking expectations we obtain the expression 

for the variance.  The final result after taking Fourier transforms 

is expressed in the frequency domain as 

E(z(t) - Ez(t))2 = I I   ( /^ Aj(o>)Hjk(a3)ökk
,(oJ)H ,*, (w) A  * (OJ) |f 

f"' AliY.U*  A* (w)   ^ -on _     _ » ' 27r (12) 

where by A we mean a Ixp row vector consisting of the Fourier trans- 

forms of ak (t) and by A* we mean a pxl column vector which is the 

complex conjugate transpose of A with * signifying complex conjugate, 

Also, from equation (2), J = {o.k(w)j is the nxn matrix of spectra 

and cross spectra at the frequency w.  In the Appendix we show that 

the inequality 

aB"la* > aX(X*BX)~1X*a* (13) 

holds with B an nxn positive definite matrix and X a pxn matrix, 

p<n, of rank p and a any Ixn complex row vector»  Now with a = AH 

and [ = B ' we may derive a lower bound for the variance given in 

equation (12) .  For 

var z(t) > f°  AHX(X*y"1X)"1X*H*A*(a)) 4^ —  —oo —       u _       2T\ 

= C  A(X*riX)"1A*(aj) da) 
2v (14) 



when the unbiased condition (10) is taken into account. Comparing 

(12) and (14) shows that equality is achieved when 

H(ü)) = (X^'xr^r1 (w) (15) 

Hence, the time version of the matrix of filters is given by calcu- 

lating equation (15) separate!v at each frequency and then trans- 

forming the result back into time. The resemblance of (15) to the 

matrix equations for the usual weighted multivariate hypothesis is 

obvious. 

We may compute the variance-covariance matrix of the estimators 

ßi(t) and 3.(t) using (7).  Again, squaring, taking expectations and 

transforming the results into the frequency domain yields 

j^ov^t), S^tH- C    HIH* M 'S1 

= C    (x^-xr1 (.) ^ (16) 

which corresponds to the usual formulas in the multivariate linear 

hypothesis. 

The general solution given in (15) requires that the spectral 

matrix of the noises be known and although this is seldom the case, 

good estimates for [ can sometimes be obtained by using a sample of 

noise when the regression coefficients &_. (t) are not present.  In 

the next section we show how the general linear model through an 

appropriate choice for X.k(t) can be sptjialized to a number of 

interesting cases occurring in practical applications. 

SOME SPECIAL CASES 

Case (i)  Estimation of the signal for uncorrelated processes 

Consider the model 

Yjft) = s(t-Tj) + n^t) (17) 
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which assumes that the signal appears the same of each process ex- 

cept that it is delayed by a known amount T.. We assume also that 

R-j^t-f) = /^ <Sjko
2(w) iwU-t') du 

2TT 

which means that the noise is uncorrelated for j f1 k  and has the 

same spectrum (autocorrelation) at each level.  In this case X.,(t) 

6(t-T..) and X.^w) = e"1Ci)Tj with ß^t) = s (t) .  Hence X* (u) m 

(eia,Tl,..., elü)Tn) and J"1 (w) = (l/a2(w)) I. Thus, equation (15) 

yields 

H(ü)) = (1/n) (e  1, e  2, iuT n) 

so that 

hk(t) = (1/n) 6(t+Tk) 

or from (5) 
n 

s(t) = (1/n) I     Yv(t+T ) 
k=l 

(19) 

(20) 

(21) 

Hence, the BLUE estimate for this case is just the average of the 

process accounting for  the delay time T. and the variance; of the 

signal estimate is, from (16) 

var s(t) = f2  o2(a))/n |~ = R(0)/n (22) 

Case (ii)  Estimation of the signal for correlated processes 

Assume that the basic model is 

(23) 

where the correlation structure and power spectral matrix of the 

Y. (t) = s(t) + n. (t) 

noise is specified by (2).  In this case X.-.ft) = 6 (t) so that 

X. ,((1)) = 1 and denoting the inverse of the spectral matrix by £" 

{0^(0))} we have by (15) 
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Jk 
) 

Hk(w) 
(24) 

with 

var s(t) = /; n/l    ff^(tt)] ^ 
(25) 

This cc^esponas to the case considered in Kelly and Levi„, 5, and 

Capon, Greenfield, and Kolker, 1. 

Case (iij)  Estimation of multiple sian^ie * uxtipie signals for uncorrelated 
processes. 

If in the general .ode! given by eguation (4) it is assumed 

that the noise processes are uncorreiated kr : , k  as ln cas, (i) 

then lM  . ,.M  t  where , u the nxn ^^^^ ^^^ ^  ^ 

equations resemble those arising in the „uitivariate Unear hypo- 

thesis.  For (15) becomes ' 

H(ü)) = (X*X)"1X*(w) i  "       I 
(26) 

and (16) yields 

cov (6i(t),ßj(t)) = £e*M   rx*xr, (a))d^ 

As a particular example the multiple signal model represented 

by equation (3) yields 

X*(w) = 
■»•/J-/ ••., 1 

eiü)Ti 

and 
ii' (28) 

(X*X)-'(a,) =   1 
A (w) 

n     -2(ajr 

-z*(a))   n (29) 
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with 

2(ü)) « I    e"iu>Tk  A(Oü) = n2  - |Z{ü))|
2 

k=l 

when \(üJ) ^ 0.  When A (w) =0 as, for example,, at w = 0, adjustments 

are needed in the procedure.  The next sections illustrate several 

examples constructed to test the computational procedures and theory. 

EXAMPLES 

The theoretical results of the previous sections are easily 

extended to discrete time parameter processes by replacing integrals 

with suiMnations and the infinite frequency range by (-7r<w<n) but 

in the application to finite time sampled data certain approximations 

are necessary.  We must decide fi^st whether the analysis proceeds 

more reasonably and economically in the time domain or the frequency 

domain.  We have chosen the frequency domain for several reasons. 

First, the restrictions imposed by signal models such as equation 

(3) must allow for time delays as long as 300 digital points.  This 

means that the time domain analogue of the matrix product (X*^~1X)~) 

becomes extremely large if a 512 point time delay preserving filter 

is required.  Hence, the frequency domain approach becomes much 

faster as the analysis can be performed separately at each frequency. 

In addition, for the signal model discussed as Case (ii), it has 

been noted in Capon, Greenfield, and Kolker, 1, that short filters 

cesigned in the time domain are more sensitive to slight station- 

arity and signal model perturbations.  Reference 1 also contains 

several examples illustrating time and frequency domain computations 

and concludes that the loss due to using a two sided infinite lag 

filter rather than the physically realizable filter obtained in the 
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time domain is small. 

The approximations used in the examples below are based on the 

use of the finite Fourier transform and involve replacing the data 

and filter by aliased versions of the optimum infinite two sided 

Fourier transforms.  References 2 and 7 contain excellent material 

describing the theory and application of the finite Fourier trans- 

form.  The effects of aliasing are reduced by choosing an appropriate 

sampling interval in time based on the highest frequency observable 

in the data.  In the two examples given below the signals are limited 

to the band from 0 to 10 cycles per second (cps) with the major 

frequency content less than 5 cps.  Hence, the data can be sampled 

with At ■ .05 seconds yielding an aliasing frequency of 10 cps. 

The data samples are long with the first being 150 seconds (3,000 pts) 

and the second 60 seconds (1200 points) so that -<»<t<«. is approx- 

imately valid.  Finally, the accuracy of the various approximations 

employed can be evaluated from simulated examples .similar to those 

given below. 

Example 1 (Case (iii)) 

Here we consider the model given by equation (3) 

TMt) = s, (t) + s9(t-T.) + n. (t) 
j       J-       t j j 

(30) 

j = 1,2,...,20 

Figure 1 shows the first five channels of data constructed to 

conform with Equation (30).  Two seismic signals and smoothed white 

noise uncorrelated from channel to channel were added in the same 

proportions to produce twenty channels.  Five of the twenty channels 

are displayed in Figure 1.  The general signal estimation procedure 

- 10 - 



was to compute the matrix product (X*X)"1X*(w) at each of 256 fre- 

quencies using Equations (28) and (29). The singularity at w-O was 

eliminated by tapering the frequency response functions down to zero 

at 0 cps. A fast Fourier transform subroutine (see McCowan,?) applied 

to the frequency response matrix H(ü)) produced the impulse response 

functions shown in Figure 2.  Note that the net results of the filters 

are to reinforce and sum the aligned signal s^t) while canceling the 

second signal s2 (t) which appears at the given time delays. The re- 

verse holds when estimating s2(t) with the unaligned signal reinforced 

and the aligned signal canceled.  The signal estimates are formed using 

a high speed convolution subroutine which calculates equation (5) as 

a matrix product in the frequency domain and then re-transforms the 

result to obtain time domain estimates for the regression functions. 

Note that in the application of the convolution each Y.(t) is avail- 

able only for the finite interval T and we assume that Y. (t) =0 for 

t X T.  The true signals s^t) and s2 (t) are displayed along with 

the estimates s^t) and ^(t) in Figure 1. The generation of the 

filters at 256 frequencies or 512 time points for 20 channels took 

eight minutes of CDC 1604 time with the subsequent convolution re- 

quiring thirty minutes. However, by combining the operations in 

a different order the total running time has been reduced to eight 

minutes. 

Example 2 

As an example of a more complicated model consider the multi- 

variate process shown in Figura 3. Each level or channel conforms 

artificially to the model. 
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YjU) - ß1(t) +    I    £    Xjn,^-") ßm <u) du + "j^) (30) 
m-2 

(j - 1, ...,5) 

The data was generated by adding noise and the known functions 3. (t) 

in Figure 3 to the data using the transfer functions X.k(t).  The 

real valued frequency responses (X., (f), f = (o/2Tr cps) are shown in 
JK 

Figure 4 for the range 0 to 2 cps.  The response functions were low 

pass filtered with a cutoff at 2 cps:  hence, there is no signi- 

ficant frequency response above that value.  The optimum filters in 

this case were 200 points or 10 seconds long and were computed by 

evaluating the matrix product (X*X)~1X* (a)) at 200 frequencies. (The 

fast Fourier transform was not used here so the number of data points 

is not a power of two.)  The resulting matrix of filter coefficients 

was convolved with the multivariate process using equation (5) to 

generate the estimates shown in Figure 3.  Comparison of these es- 

timated regression functions with the true regression functions in- 

dicates that the procedure again produces reasonable estimates. 
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APPENDIX 

PROOF OF BASIC INEQUALITY 

In order to prove the inequality (13) we use the n variate 

complex normal distribution defined by Goodman, 3. An n-variate 

complex normal random variable ^ = (K^,   £2' •**#^n^ is an n"tuPle 

of complex random variables with a probability density function 

given by 

?! (U = I"!!'" exp - U - ^B-1 U - a)* (31) 

with 

B = E(C - a) * (i - a) 

and B a Hermitian positive definite complex covariance matrix.  The 

mean of the complex vector £ is assumed to be the complex vector a. 

We shall need to calculate the discrimination information 

measure as developed in Kullback, 6.  If by ^2^^   is meant  a zero 

mean complex multivariate normal random variable with covariance 

matrix B, the discrimination information is defined to be 

p 
I{I:2;a = / P, (Olog —i^l-    dC (32) 

i P2(i) 

which for P^^ (C) and ^2^^   above becomes 

I(I:2;0 = a B"1 a* (33) 

Now if X is an nxp (p£n) matrix of rank p, define the transformation 

n = iX (34) 

with the pxl vector n having a complex multivariate normal distri- 

bution with mean aX and variance-covariance matrix X*BX.  Then X*BX 

is non-singular and Hermitian positive definite and 

I(l:2;n) = aX(X*BX)~1  X*a* (35) 
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Now since (34) is a measurable transformation we have (for the proof 

of this inequality in the real ca^e, see Kullback, 6, p.57) I(l:2;ji) 

£ I(l:2;0 which implies the inequality 

cxB-1^ > aX(X*BX)~1X*ot* (36) 
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